Promise of a Novel Classification System for Acute Myocardial Infarction

Prakriti Gaba, MD, and Deepak L. Bhatt, MD, MPH

Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York, USA

See article by Kumar et al., pages 1-14 of this issue.

Accurate classification of acute myocardial infarction (MI) is instrumental for the appropriate diagnosis and effective management of patients who suffer from this widely prevalent cardiovascular condition. A variety of clinical scores are available to advise clinicians on the best classification schemes for these high-risk patients. Perhaps the most notable of these scores are the Thrombolysis In Myocardial Infarction (TIMI) risk score, the History, ECG, Age, Risk Factors, and Troponin (HEART) score, and the Killip classification. The strength of these scores includes their practicality, because they can be implemented at the bedside to rapidly assist with prognostication. Nonetheless, as technologic advancements have made imaging and tissue identification more accessible, national and international committees are interested in revising traditional classification schemes of acute MI with novel ones that leverage multimodal approaches.

In this issue of the Canadian Journal of Cardiology, Kumar et al. present the Canadian Cardiovascular Society classification of acute myocardial infarction (Fig. 1), a new expert consensus classification of atherothrombotic MI. Using data on acute MI and reperfusion therapy over the past 5 decades, this classification document delineates a novel definition of acute MI with an emphasis on incorporating prognostic myocardial pathology, as opposed to clinical features. Specifically, the 4 stages of progressively worsening myocardial tissue injury described include: (1) aborted MI (no/minimal myocardial necrosis) but without microvascular injury; (2) cardiomyocyte necrosis and microvascular dysfunction leading to microvascular obstruction (ie, “no-reflow”); and (4) cardiomyocyte and microvascular necrosis leading to reperfusion hemorrhage. Injury at each stage builds upon that of the previous stage, escalating in severity and deteriorating prognosis.

There is no doubt that the classification system proposed by the investigators is important and timely because acute MI continues to account for substantial morbidity and mortality worldwide. However, there are promises and challenges that should be noted and weighed before its widespread implementation is possible.

One promise of this novel classification scheme includes its unique incorporation of myocardial pathology in the evaluation of patients with acute MI—a characteristic that is of high prognostic value but has not been used routinely in the past. Several studies have shown that the degree and type of tissue injury in MI are predictive of ventricular remodeling. In fact, progressive loss of myocardium has been associated with worse left ventricular systolic function and with cardiovascular death. Moreover, infarct size has been shown to be an important predictor of adverse cardiovascular outcomes, including hospitalization, heart failure, and death.

As such, the classification scheme would offer an enhanced ability to distinguish high- and low-risk patients who present with acute MI. The incorporation of microvascular obstruction is another strength of this classification system. Advances in imaging have shed light on the prognostic importance of microvascular obstruction. Microvascular obstruction assessed using cardiovascular magnetic resonance (CMR) has been associated with left ventricular remodeling in addition to long-term morbidity after acute MI. Distal coronary artery blood flow obstruction, which often results in the “no-reflow” phenomenon despite successful treatment of the culprit lesion, is a key marker of worse outcomes and increased mortality among patients with acute MI. Previous classification schemes have mostly ignored this aspect of coronary disease, and focused instead on clinical and laboratory features.

In research, the benefits of such a nuanced classification system are evident. The new classification system would allow for the assessment of experimental diagnostic and therapeutic strategies in a more detailed manner. Investigators would be able to understand how tissue changes associated with the various stages of acute MI are affected by new study treatments.

https://doi.org/10.1016/j.cjca.2023.10.011
0828-282X/© 2023 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Potential challenges, however, include the utility and practical nature of the proposed classification system in clinical practice. Unlike the clinical scores that are rapidly available for use at a patient’s bedside, implementation of the proposed pathology-based classification system would be more challenging. The investigators suggest using CMR as the mainstay diagnostic modality to differentiate the 4 distinct stages of acute MI. Although a powerful imaging technique on its own, CMR is at present rarely used in the evaluation of a patient with acute MI. Moreover, there is limited infrastructure for increasing CMR imaging volumes. Many hospitals already have backlogs of patients who need to undergo CMR imaging, and adding this indication for CMR imaging would likely exacerbate the existing backlog. In addition, some patients might not be able to tolerate the study because CMR imaging procedures are often long and might trigger claustrophobia, and the use of gadolinium enhancement-based approaches for the detection of microvascular obstruction might be limited for patients with significant kidney disease. These challenges must be appreciated and addressed before broad implementation of such a classification system.

In summary, Kumar et al. present a novel and intriguing 4-tiered classification scheme for patients with acute MI. This classification scheme allows unique use of prognostic pathologic features to help distinguish high- and low-risk acute MI patients. However, greater access to CMR imaging would be needed to implement this new clinical approach broadly, although for research on emerging diagnostic and therapeutic strategies, it could be implemented immediately.

Funding Sources

None.

Disclosures

Dr Bhatt discloses the following relationships. Advisory Board: Angiowave, Bayer, Boehringer Ingelheim, Cardax, CellProthera, Cereno Scientific, Elsevier Practice Update Cardiology, High Enroll, Janssen, Level Ex, McKinsey, Medscape Cardiology, Merck, MyoKardia, NirvaMed, Novo Nordisk, PhaseBio, PLx Pharma, Regado Biosciences, and Stasys; Board of Directors: Angiowave (stock options), Boston VA Research Institute, Bristol Myers Squibb (stock), DRS.LINQ (stock options), High Enroll (stock), Society of Cardiovascular Patient Care, and Tobesoft; Chair: Inaugural Chair, American Heart Association Quality Oversight Committee; Consultant: Broadview Ventures, and Hims; data monitoring committees: Acession Pharma, Assistance Publique-Hôpitaux de Paris, Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute, for the PORTICO trial, funded by St Jude Medical, now Abbott), Boston Scientific (Chair, PEITHO trial), Cleveland Clinic (including for the ExCEED trial, funded by Edwards), Contego Medical (Chair, PERFORMANCE 2), Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine (for the ENVISAGE trial, funded by Daiichi Sankyo, for the ABILITY-DM trial (funded by Concept Medical), Novartis, and Population Health Research Institute; Rutgers University (for the NIH-funded MINT Trial); honoraria: American College of Cardiology (Senior Associate Editor, Clinical Trials and News, and ACC.org: Chair, ACC Accreditation Oversight Committee, Arnold and Porter law firm (work related to Sanofi/Bristol-Myers Squibb clopidogrel litigation), Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute), RE-DUAL PCI clinical trial steering committee funded by Boehringer Ingelheim; AEGIS-II executive committee funded by CSL Behring, Belvoir Publications (Editor in Chief, Harvard Heart Letter), Canadian Medical and Surgical Knowledge Translation Research Group (clinical trial steering committees), Cowen and Company, Duke Clinical Research Institute (clinical trial steering committees, including for the PRONOUNCE trial (funded by Ferrigno Pharmaceuticals), HMP Global (Editor in Chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (Guest Editor; Associate Editor), K2P (Co-Chair, interdisciplinary curriculum), Level Ex, Medtelligence/ReachMD (CME steering committees), MJH Life Sciences, Oakstone CME (Course Director, Comprehensive Review of Interventional Cardiology), Piper Sandler, Population Health Research Institute (for
the COMPASS operations committee, publications committee, steering committee, and United States national co-leader (funded by Bayer), Slack Publications (Chief Medical Editor, Cardiology Today’s Intervention), Society of Cardiovascular Patient Care (Secretary/Treasurer), WebMD (CME steering committees), Wiley (steering committee); Other: Clinical Cardiology (Deputy Editor), NCDR-ACTION Registry Steering Committee (Chair), VA CART Research and Publications Committee (Chair); Patent: Sotagliflozin (named on a patent for sotagliflozin assigned to Brigham and Women’s Hospital who assigned to Lexicon; neither Dr Bhatt nor Brigham and Women’s Hospital receive any income from this patent); Research Funding: Abbott, Acesion Pharma, Afimmune, Aker Biomarine, Amarin, Amgen, AstraZeneca, Bayer, Beren, Boehringer Ingelheim, Boston Scientific, Bristol-Myers Squibb, Cardax, CellProthera, Cereno Scientific, Chiesi, CinCor, Clev erly, CSL Behring, Eisai, Ethicon, Faraday Pharmaceuticals, Ferring Pharmaceuticals, Forest Laboratories, Fractyl, Gar min, HLS Therapeutics, Idorsia, Ironwood, Ischemix, Janssen, Javelin, Lexicon, Lilly, Medtronic, Merck, Moderna, Myo Kardia, NirvaMed, Novartis, Novo Nordisk, Owkin, Pfizer, PhaseBio, PLx Pharma, Recardio, Regeneron, Reid Hoffman Foundation, Roche, Sanofi, Synaptic, The Medicines Company, Youngene, and 89Bio; Trustee: American College of Cardiology; Unfunded Research: FlowCo and Takeda. Dr Gaba has no conflicts of interest to disclose.

References

